Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Oncol ; : JCO2301730, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412399

RESUMO

PURPOSE: Hand-foot syndrome (HFS) is a dose-limiting side effect of capecitabine. Celecoxib prevents HFS by inhibiting cyclooxygenase-2 (COX-2) that is upregulated because of the underlying associated inflammation. However, systemic side effects of celecoxib have limited routine prescription. Topical diclofenac inhibits COX-2 locally with minimal risk of systemic adverse events. Therefore, we conducted this study to assess the efficacy of topical diclofenac in the prevention of capecitabine-induced HFS. METHODS: In this single-site phase III randomized double-blind trial, we enrolled patients with breast or GI cancer who were planned to receive capecitabine-based treatment. Participants were randomly assigned in a 1:1 ratio to receive topical diclofenac or placebo gel for 12 weeks or until the development of HFS, whichever occurred earlier. The primary end point was the incidence of grade 2 or 3 HFS (Common Terminology Criteria for Adverse Events version 5), which was compared between the two groups using simple logistic regression. RESULTS: In total, 264 patients were randomly assigned to receive topical diclofenac gel (n = 131) or placebo (n = 133). Grade 2 or 3 HFS was observed in 3.8% of participants in the diclofenac group compared with 15.0% in the placebo group (absolute difference, 11.2%; 95% CI, 4.3 to 18.1; P = .003). Grade 1-3 HFS was lower in the diclofenac group than in the placebo group (6.1% v 18.1%; absolute risk difference, 11.9%; 95% CI, 4.1 to 19.6). Capecitabine dose reductions because of HFS were less frequent in the diclofenac group (3.8%) than in the placebo group (13.5%; absolute risk difference, 9.7%; 95% CI, 3.0 to 16.4). CONCLUSION: Topical diclofenac prevented HFS in patients receiving capecitabine. This trial supports the use of topical diclofenac to prevent capecitabine-associated HFS.

2.
Methods Mol Biol ; 2572: 55-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36161407

RESUMO

Tumor vasculature is the major extrinsic factor that shapes Intra-tumoral heterogeneity (ITH). Non-uniform exposure of microenvironmental cues greatly impacts cancer cell phenotypes leading to ITH, which exacerbates therapy resistance. This raises a need to study the influence of non-uniform perfusion patterns and the resulting heterogeneity that persists within the tumor microenvironment (TME). A method was developed to identify cancer cells based on their proximity to functional blood vessels (BVs) called perfusion-based fluorescent dye labeling of cells (PFDLC). PFDLC works on the principle of perfusion, where a freely diffusible nuclear binding fluorescent dye (Hoechst 33342) is injected intravenously (i.v.) through a tail vein into atumor-bearing mice. The tumors are retrieved post dye perfusion, dissociated into single cells, and sorted based on their dye uptake proportional to their distance from the nearest blood capillary. This method is amenable to multi-omics as well as functional assays.


Assuntos
Corantes Fluorescentes , Neoplasias , Animais , Vasos Sanguíneos/metabolismo , Movimento Celular , Corantes Fluorescentes/metabolismo , Camundongos , Neoplasias/metabolismo , Perfusão , Microambiente Tumoral
3.
Semin Cancer Biol ; 88: 138-156, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584960

RESUMO

Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Carcinogênese/metabolismo , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo
4.
Angiogenesis ; 25(3): 355-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35112158

RESUMO

Glioblastoma stem cells (GSCs) reside close to blood vessels (BVs) but vascular cues contributing to GSC stemness and the nature of GSC-BVs cross talk are not fully understood. Here, we dissected vascular cues influencing GSC gene expression and function to perfusion-based vascular cues, as well as to those requiring direct GSC-endothelial cell (EC) contacts. In light of our previous finding that perivascular tumor cells are metabolically different from tumor cells residing further downstream, cancer cells residing within a narrow, < 60 µm wide perivascular niche were isolated and confirmed to possess a superior tumor-initiation potential compared with those residing further downstream. To circumvent reliance on marker expression, perivascular GSCs were isolated from the respective locales based on their relative state of quiescence. Combined use of these procedures uncovered a large number of previously unrecognized differentially expressed GSC genes. We show that the unique metabolic milieu of the perivascular niche dominated by the highly restricted zone of mTOR activity is conducive for acquisition of GSC properties, primarily in the regulation of genes implicated in cell cycle control. A complementary role of vascular cues including those requiring direct glioma/EC contacts was revealed using glioma/EC co-cultures. Outstanding in the group of glioma cells impacted by nearby ECs were multiple genes responsible for maintaining GSCs in an undifferentiated state, a large fraction of which also relied on Notch-mediated signaling. Glioma-EC communication was found to be bidirectional, evidenced by extensive Notch-mediated EC reprogramming by contacting tumor cells, primarily metabolic EC reprogramming.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sinais (Psicologia) , Glioblastoma/patologia , Glioma/irrigação sanguínea , Glioma/genética , Humanos , Células-Tronco Neoplásicas/patologia
5.
Elife ; 92020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32496193

RESUMO

Blood vessels (BVs) are considered an integral component of neural stem cells (NSCs) niches. NSCs in the dentate gyrus (DG(have enigmatic elaborated apical cellular processes that are associated with BVs. Whether this contact serves as a mechanism for delivering circulating molecules is not known. Here we uncovered a previously unrecognized communication route allowing exclusive direct access of blood-borne substances to hippocampal NSCs. BBB-impermeable fluorescent tracer injected transcardially to mice is selectively uptaken by DG NSCs within a minute, via the vessel-associated apical processes. These processes, measured >30 nm in diameter, establish direct membrane-to-membrane contact with endothelial cells in specialized areas of irregular endothelial basement membrane and enriched with vesicular activity. Doxorubicin, a brain-impermeable chemotherapeutic agent, is also readily and selectively uptaken by NSCs and reduces their proliferation, which might explain its problematic anti-neurogenic or cognitive side-effect. The newly-discovered NSC-BV communication route explains how circulatory neurogenic mediators are 'sensed' by NSCs.


Assuntos
Células Endoteliais/citologia , Hipocampo/citologia , Células-Tronco Neurais/fisiologia , Animais , Antibióticos Antineoplásicos/metabolismo , Membrana Basal/citologia , Membrana Basal/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Comunicação Celular , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/fisiologia , Vesículas Citoplasmáticas/metabolismo , Doxorrubicina/metabolismo , Células Endoteliais/metabolismo , Feminino , Substâncias de Crescimento/metabolismo , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese
6.
Bio Protoc ; 10(10): e3628, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659301

RESUMO

Differential exposure of tumor cells to microenvironmental cues greatly impacts cell phenotypes, raising a need for position based sorting of tumor cells amenable to multiple OMICs and functional analyses. One such key determinant of tumor heterogeneity in solid tumors is its vasculature. Proximity to blood vessels (BVs) profoundly affects tumor cell phenotypes due to differential availability of oxygen, gradient exposure to blood-borne substances and inputs by angiocrine factors. To unravel the whole spectrum of genes, pathways and phenotypes impacted by BVs and to determine spatial domains of vascular influences, we developed a methodology for sorting tumor cells according to their relative distance from BVs. The procedure exemplified here using glioblastoma (GBM) model is based on differential uptake of intra-venously injected, freely-diffusing fluorescent dye that allows separation of stroma-free tumor cells residing in different, successive microenvironments amenable for subsequent OMICs and functional analyses. This reliable, easy to use, cost effective strategy can be extended to all solid tumors to study the impact of vasculature or the lack of it.

7.
Cell Metab ; 30(1): 201-211.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31056286

RESUMO

Differential exposure of tumor cells to blood-borne and angiocrine factors results in diverse metabolic microenvironments conducive for non-genetic tumor cell diversification. Here, we harnessed a methodology for retrospective sorting of fully functional, stroma-free cancer cells solely on the basis of their relative distance from blood vessels (BVs) to unveil the whole spectrum of genes, metabolites, and biological traits impacted by BV proximity. In both grafted mouse tumors and natural human glioblastoma (GBM), mTOR activity was confined to few cell layers from the nearest perfused vessel. Cancer cells within this perivascular tier are distinguished by intense anabolic metabolism and defy the Warburg principle through exercising extensive oxidative phosphorylation. Functional traits acquired by perivascular cancer cells, namely, enhanced tumorigenicity, superior migratory or invasive capabilities, and, unexpectedly, exceptional chemo- and radioresistance, are all mTOR dependent. Taken together, the study revealed a previously unappreciated graded metabolic zonation directly impacting the acquisition of multiple aggressive tumor traits.


Assuntos
Glioblastoma/metabolismo , Metabolômica/métodos , Animais , Apoptose/fisiologia , Vasos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Tamanho Celular , Sobrevivência Celular/fisiologia , Citometria de Fluxo , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos SCID , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Análise de Componente Principal
8.
Nat Commun ; 10(1): 1590, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962446

RESUMO

Alternative splicing, a fundamental step in gene expression, is deregulated in many diseases. Splicing factors (SFs), which regulate this process, are up- or down regulated or mutated in several diseases including cancer. To date, there are no inhibitors that directly inhibit the activity of SFs. We designed decoy oligonucleotides, composed of several repeats of a RNA motif, which is recognized by a single SF. Here we show that decoy oligonucleotides targeting splicing factors RBFOX1/2, SRSF1 and PTBP1, can specifically bind to their respective SFs and inhibit their splicing and biological activities both in vitro and in vivo. These decoy oligonucleotides present an approach to specifically downregulate SF activity in conditions where SFs are either up-regulated or hyperactive.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Oligonucleotídeos/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Músculo Esquelético/crescimento & desenvolvimento , Degradação do RNAm Mediada por Códon sem Sentido , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de Serina-Arginina/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina/metabolismo , Sequências de Repetição em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Peixe-Zebra/genética
9.
J Exp Med ; 216(1): 215-230, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30545903

RESUMO

Insufficient erythropoiesis due to increased demand is usually met by hypoxia-driven up-regulation of erythropoietin (Epo). Here, we uncovered vascular endothelial growth factor (VEGF) as a novel inducer of Epo capable of increasing circulating Epo under normoxic, nonanemic conditions in a previously unrecognized reservoir of Epo-producing cells (EPCs), leading to expansion of the erythroid progenitor pool and robust splenic erythropoiesis. Epo induction by VEGF occurs in kidney, liver, and spleen in a population of Gli1+SMA+PDGFRß+ cells, a signature shared with vascular smooth muscle cells (VSMCs) derived from mesenchymal stem cell-like progenitors. Surprisingly, inhibition of PDGFRß signaling, but not VEGF signaling, abrogated VEGF-induced Epo synthesis. We thus introduce VEGF as a new player in Epo induction and perivascular Gli1+SMA+PDGFRß+ cells as a previously unrecognized EPC reservoir that could be harnessed for augmenting Epo synthesis in circumstances such as chronic kidney disease where production by canonical EPCs is compromised.


Assuntos
Eritropoese , Eritropoetina/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Hipóxia Celular , Células Precursoras Eritroides , Eritropoetina/genética , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/genética , Células Estromais/citologia , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
10.
Nucleic Acids Res ; 46(21): 11396-11404, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30329087

RESUMO

The gene encoding the kinase Mnk2 (MKNK2) is alternatively spliced to produce two isoforms-Mnk2a and Mnk2b. We previously showed that Mnk2a is downregulated in several types of cancer and acts as a tumor suppressor by activation of the p38-MAPK stress pathway, inducing apoptosis. Moreover, Mnk2a overexpression suppressed Ras-induced transformation in culture and in vivo. In contrast, the Mnk2b isoform acts as a pro-oncogenic factor. In this study, we designed modified-RNA antisense oligonucleotides and screened for those that specifically induce a strong switch in alternative splicing of the MKNK2 gene (splice switching oligonucleotides or SSOs), elevating the tumor suppressive isoform Mnk2a at the expense of the pro-oncogenic isoform Mnk2b. Induction of Mnk2a by SSOs in glioblastoma cells activated the p38-MAPK pathway, inhibited the oncogenic properties of the cells, re-sensitized the cells to chemotherapy and inhibited glioblastoma development in vivo. Moreover, inhibition of p38-MAPK partially rescued glioblastoma cells suggesting that most of the anti-oncogenic activity of the SSO is mediated by activation of this pathway. These results suggest that manipulation of MKNK2 alternative splicing by SSOs is a novel approach to inhibit glioblastoma tumorigenesis.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Oligonucleotídeos/genética , Proteínas Serina-Treonina Quinases/genética , Processamento Alternativo , Animais , Apoptose , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Genes Supressores de Tumor , Glioblastoma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Oligonucleotídeos Antissenso , Fosforilação , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Immunology ; 155(4): 505-518, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144045

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell metabolism and lymphocyte proliferation. It is inhibited by the tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2. Deletion of either gene results in robust activation of mTORC1. Mature B cells reside in the spleen at two major anatomical locations, the marginal zone (MZ) and follicles. The MZ constitutes the first line of humoral response against blood-borne pathogens and undergoes atrophy in chronic inflammation. In previous work, we showed that mice deleted for TSC1 in their B cells (TSC1BKO ) have almost no MZ B cells, whereas follicular B cells are minimally affected. To explore potential underlying mechanisms for MZ B-cell loss, we have analysed the spleen MZ architecture of TSC1BKO mice and found it to be severely impaired. Examination of lymphotoxins (LTα and LTß) and lymphotoxin receptor (LTßR) expression indicated that LTßR levels in spleen stroma were reduced by TSC1 deletion in the B cells. Furthermore, LTα transcripts in B cells were reduced. Because LTßR is sensitive to proteolysis, we analysed cathepsin activity in TSC1BKO . A higher cathepsin activity, particularly of cathepsin B, was observed, which was reduced by mTORC1 inhibition with rapamycin in vivo. Remarkably, in vivo administration of a pan-cathepsin inhibitor restored LTßR expression, LTα mRNA levels and the MZ architecture. Our data identify a novel connection, although not elucidated at the molecular level, between mTORC1 and cathepsin activity in a manner relevant to MZ dynamics.


Assuntos
Linfócitos B/imunologia , Catepsinas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Baço/imunologia , Animais , Células CHO , Catepsinas/antagonistas & inibidores , Linhagem Celular , Cricetulus , Receptor beta de Linfotoxina/biossíntese , Linfotoxina-alfa/biossíntese , Linfotoxina-beta/biossíntese , Camundongos , Camundongos Transgênicos , Sirolimo/farmacologia , Baço/citologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
12.
Cell Metab ; 28(4): 573-587.e13, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30017355

RESUMO

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDHKD) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction. Electron transport chain (ETC) enzyme activities were compromised upon PHGDHKD because of insufficient heme production due to cellular serine depletion, not observed in other cell types. As a result of heme depletion, elevated reactive oxygen species levels caused EC demise. Supplementation of hemin in PHGDHKD ECs restored ETC function and rescued the apoptosis and angiogenesis defects. These data argue that ECs die upon PHGDH inhibition, even without external serine deprivation, illustrating an unusual importance of serine synthesis for ECs.


Assuntos
Células Endoteliais/metabolismo , Heme/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Apoptose , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Suplementos Nutricionais , Técnicas de Silenciamento de Genes , Hemina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microcefalia/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Neovascularização Fisiológica , Estresse Oxidativo , Fosfoglicerato Desidrogenase/deficiência , Biossíntese de Proteínas , Transtornos Psicomotores/metabolismo , Purinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Convulsões/metabolismo
13.
Nanomedicine ; 14(4): 1407-1416, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29680672

RESUMO

Folate-targeted liposomes (FTL) were tested as drug delivery vehicles to PSMA-positive cancer cells. We used FL with co-entrapped mitomycin C lipophilic prodrug (MLP) and doxorubicin (DOX), and the LNCaP prostate cancer cell line which expresses PSMA but is negative for folate receptor. A major increase in cell drug levels was observed when LNCaP cells were incubated with FTL as compared to non-targeted liposomes (NTL). MLP was activated to mitomycin C, and intracellular and nuclear fluorescence of DOX was detected, indicating FTL processing and drug bioavailability. PMPA (2-(phosphonomethyl)-pentanedioic acid), a specific inhibitor of PSMA, blocked the uptake of FTL into LNCaP cells, but did not affect the uptake of FTL into PSMA-deficient and folate receptor-positive KB cells. The cytotoxic activity of drug-loaded FTL was found significantly enhanced when compared to NTL in LNCaP cells. FTL may provide a new tool for targeted therapy of cancers that over-express the PSMA receptor.


Assuntos
Antígenos de Superfície/metabolismo , Doxorrubicina/química , Ácido Fólico/química , Glutamato Carboxipeptidase II/metabolismo , Lipossomos/química , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Mitomicina/química , Mitomicina/farmacologia
14.
Cell Rep ; 21(9): 2384-2392, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186678

RESUMO

Preexisting diabetes is a risk factor for the development of multiple types of cancer. Additionally, diabetic patients face a poorer prognosis when diagnosed with cancer. To gain insight into the effects of hyperglycemia, a hallmark of diabetes, on tumor growth and metastatic progression, we combined mouse models of cancer and hyperglycemia. We show that while hyperglycemia attenuates primary tumor growth, it concomitantly increases metastatic seeding in a distant organ. We further show that the increase in metastatic seeding is due to impaired secretion of granulocyte colony-stimulating factor (G-CSF) and impaired neutrophil mobilization. Normalizing blood glucose levels using insulin rescues neutrophil recruitment and tumor growth and concomitantly reduces metastatic seeding. These results provide links among hyperglycemia-induced changes in neutrophil mobilization, primary tumor growth, and metastatic progression. Furthermore, our observations highlight the importance of normalizing blood glucose levels in hyperglycemic cancer patients.


Assuntos
Hiperglicemia/metabolismo , Neutrófilos/fisiologia , Animais , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Fator Estimulador de Colônias de Granulócitos/imunologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hiperglicemia/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/imunologia
15.
Sci Rep ; 6: 31130, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27491335

RESUMO

Atherosclerosis is a chronic inflammatory disease characterized by formation of lipid-rich plaques on the inner walls of arteries. ADAMTS4 (a disintegrin-like and metalloproteinase with thrombospondin motifs-4) is a secreted proteinase that regulates versican turnover in the arterial wall and atherosclerotic plaques. Recent reports indicated elevated ADAMTS4 level in human atherosclerotic plaques and in the plasma of acute coronary syndrome patients. Nevertheless, whether increased ADAMTS4 is a consequence of atherosclerosis or ADAMTS4 has a causal role in atherogenesis remains unknown. In this work, we investigated the role of ADAMTS4 in diet induced atherosclerosis using apolipoprotein E deficient (ApoE(-/-)) and Adamts4 knockout mice. We show that ADAMTS4 expression increases in plaques as atherosclerosis progresses in ApoE(-/-) mice. ApoE(-/-)Adamts4(-/-) double knockout mice presented a significant reduction in plaque burden at 18 weeks of age. Loss of ADAMTS4 lead to a more stable plaque phenotype with a significantly reduced plaque vulnerability index characterized by reduced lipid content and macrophages accompanied with a significant increase in smooth muscle cells, collagen deposition and fibrotic cap thickness. The reduced atherosclerosis is accompanied by an altered plasma inflammatory cytokine profile. These results demonstrate for the first time that ADAMTS4 contributes to diet induced atherosclerosis in ApoE(-/-) mice.


Assuntos
Proteína ADAMTS4/genética , Apolipoproteínas E/genética , Aterosclerose/genética , Dieta Hiperlipídica , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Camundongos , Camundongos Knockout
17.
Int J Cancer ; 133(2): 294-306, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23319426

RESUMO

The metalloproteinase ADAMTS4 (ADAMTS, a disintegrin-like and metalloproteinase with thrombospondin motif)/aggrecanase-1 is highly expressed in cartilage and has been implicated in human arthritis. Although abundantly expressed in many types of cancer, its role in cancer remains unknown. In this work, we demonstrate for the first time that full-length ADAMTS4 and its catalytically more active N-terminal 53 kDa autocatalytic fragment both promote B16 melanoma growth and angiogenesis in mice. In contrast, overexpression of its catalytically inactive E362A mutant or truncated fragments containing only the C-terminal ancillary domains suppresses melanoma growth and angiogenesis under similar conditions. Structure-function mapping revealed that the single thrombospondin-type 1 repeat domain is essential and sufficient for the antitumorigenic activity displayed by the catalytically inactive ADAMTS4 isoforms. Suppression of tumor growth and angiogenesis in mice is accompanied by a significant increase in tumor cell apoptosis, whereas tumor cell proliferation is not affected. Importantly, we identified and demonstrated the presence of novel proteolytic fragments of ADAMTS4 containing essentially only the C-terminal ancillary domains in cultured cells, and also in human cancer tissues, coexisting with full-length and catalytically active N-terminal fragments. The contrasting functions toward tumor growth in mice by the wild-type proteinase and its catalytically inactive mutant correlate with their contrasting influences on angiogenesis signaling pathway molecules in B16 melanoma in mice. Our results suggest a complex role for ADAMTS4 in cancer with the functional balance of protumorigenic and antitumorigenic isoforms likely to act as an important parameter in determining the net influence of this metalloproteinase on tumor growth in vivo.


Assuntos
Proteínas ADAM/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Neovascularização Patológica , Pró-Colágeno N-Endopeptidase/metabolismo , Neoplasias Cutâneas/metabolismo , Proteína ADAMTS4 , Motivos de Aminoácidos , Animais , Apoptose , Catálise , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo
18.
Am J Pathol ; 181(3): 1056-68, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22796434

RESUMO

ADAMTS5 is a member of the A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs (ADAMTS) family of secreted metalloproteinases with multiple proteoglycan substrates. Although well characterized for its role in cartilage degradation and arthritis, how it influences cancer remains unclear. We have previously shown that the first thrombospondin type 1 repeat (TSR1, the central TSR) but not TSR2 (the C-terminal TSR) of ADAMTS5 is anti-angiogenic in vitro. Coupled with previous reports that ADAMTS5 expression is altered in several human cancers, we hypothesized that this proteoglycanase may play an important role in cancer and angiogenesis. Here, we demonstrated that overexpression of full-length ADAMTS5 suppressed B16 melanoma growth in mice. The reduced tumor growth is correlated with diminished tumor angiogenesis, together with reduced tumor cell proliferation and increased tumor cell apoptosis. Catalytically active ADAMTS5 proteolytic fragment also suppressed angiogenesis in vitro. The catalytic activity of ADAMTS5 is dispensable for its anti-tumorigenic function, as the full-length active site mutant E411A presented similar tumor suppression activity. Domain mapping and mechanistic studies revealed that ADAMTS5 inhibits B16 tumorigenesis through its TSR1 by suppressing tumor angiogenesis, likely by down-regulating pro-angiogenic factors such as vascular endothelial growth factor (VEGF), placenta growth factor (PlGF), and platelet-derived endothelial growth factor (PD-ECGF) in the tumor milieu. This is the first report that ADAMTS5 is an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity.


Assuntos
Proteínas ADAM/metabolismo , Inibidores da Angiogênese/metabolismo , Transformação Celular Neoplásica/patologia , Metaloendopeptidases/metabolismo , Proteínas ADAM/química , Proteína ADAMTS5 , Animais , Apoptose , Biocatálise , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Metaloendopeptidases/química , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/enzimologia , Estrutura Terciária de Proteína , Deleção de Sequência
19.
Cancers (Basel) ; 4(4): 1252-99, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24213506

RESUMO

A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs-ADAMTSs-are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.

20.
J Control Release ; 146(1): 76-83, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20462513

RESUMO

INTRODUCTION: Zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, is a potent inhibitor of farnesyl-pyrophosphate synthase with poor in vitro cytotoxic activity as a result of its limited diffusion into tumor cells. The purpose of this study was to investigate whether liposomes targeted to the folate receptor (FR) can effectively deliver ZOL to tumor cells and enhance its in vitro cytotoxicity. METHODS: ZOL was entrapped in the water phase of liposomes of various compositions with or without a lipophilic folate ligand. Stability and blood levels after i.v. injection were checked. The in vitro cytotoxic activity and cell uptake of liposomal ZOL (L-ZOL) were examined on various human and mouse cell lines. RESULTS: All formulations were highly stable and resulted in high blood levels in contrast to free ZOL which was rapidly cleared from plasma. Non-targeted L-ZOL was devoid of any in vitro activity at concentrations up to 200 microM. In contrast, potent cytotoxic activity of folate-targeted L-ZOL (FTL-ZOL) was observed, with optimal activity, reaching the sub-micromolar range, for dipalmitoyl-phosphatidylglycerol (DPPG)-containing liposomes and relatively lower activity for pegylated (PEG) formulations. IC50 values of FTL-ZOL on FR-expressing tumor cells were >100-fold lower than those of free ZOL. Compared to doxorubicin, the cytotoxicity of DPPG-FTL-ZOL was equivalent in drug-sensitive cell lines, and greatly superior in drug-resistant cell lines. When tested on the non-FR upregulated cell lines, the cytotoxicity of FTL-ZOL was lower but still superior to that of L-ZOL. The uptake of ZOL by FR-expressing tumor cells was enhanced approximately 25-fold with DPPG-FTL-ZOL, and only approximately 4-fold with PEG-FTL-ZOL. CONCLUSIONS: FR targeting of ZOL using liposomes is an effective means to exploit the tumor cell growth inhibitory properties of ZOL. DPPG-FTL-ZOL is significantly more efficient at intracellular delivery of ZOL than PEG-FTL-ZOL in FR-expressing tumor cells.


Assuntos
Antineoplásicos/administração & dosagem , Difosfonatos/administração & dosagem , Portadores de Fármacos/química , Ácido Fólico/química , Imidazóis/administração & dosagem , Fosfolipídeos/química , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/sangue , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Composição de Medicamentos , Estabilidade de Medicamentos , Feminino , Receptores de Folato com Âncoras de GPI/biossíntese , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Humanos , Imidazóis/sangue , Imidazóis/farmacocinética , Imidazóis/farmacologia , Bicamadas Lipídicas/química , Lipossomos , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...